Automatic Face Mask Detector menggunakan Algoritma Viola and Jones

Yustia Hapsari, Muhammad Fikri Hidayattullah, Mohammad Humam, M Nishom

Abstract


Salah satu bentuk protokol kesehatan yang harus ditaati selama masa pandemi Covid-19 adalah kewajiban memakai masker di tempat umum. Namun kenyataannya masih sering dijumpai anggota masyarakat yang tidak mematuhi aturan tersebut. Mereka hanya mau taat jika ada pengawasan dari Satgas Covid-19. Penelitian ini mengembangkan sebuah prototipe untuk melakukan deteksi masker wajah secara realtime menggunakan algoritma Viola and Jones. Algoritma Viola and Jones terbukti handal dan cepat dalam mendeteksi objek. Prototipe tersebut bekerja dengan mendeteksi area hidung dan mulut. Jika ditemukan area hidung dan mulut di area wajah maka akan disimpulkan bahwa objek tidak memakai masker. Jika tidak ditemukan area hidung dan mulut, maka akan disimpulkan objek memakai masker. Berdasarkan hasil pengujian diketahui bahwa prototipe ini mampu bekerja dengan baik pada pencahayaan yang rendah dan jarak 1 meter.


Keywords


Covid-19, Pandemi, Deteksi, Masker, Viola Jones

Full Text:

References


R. N. Putri, “Indonesia dalam Menghadapi Pandemi Covid-19,” J. Ilm. Univ. Batanghari Jambi, vol. 20, no. 2, p. 705, 2020.

J. Howard et al., “Face masks against COVID-19: An evidence review,” no. April, pp. 1–8, 2020.

S. Seprianto, M. P. Hasibuan, and R. P. Sari, “Pembuatan Masker Waterproof Berbahan Polyester Untuk Mencegah Penularan Droplet Bakteri Dan Virus Dalam Upaya Pemutusan Mata Rantai Penularan Covid-19,” Martabe J. Pengabdi. Kpd. Masy., vol. 4, no. 1, p. 235, 2021.

P. Viola, “Rapid Object Detection using a Boosted Cascade of Simple Features,” Comput. Vis. Pattern Recognition, 2001. CVPR 2001. Proc. 2001 IEEE Comput. Soc. Conf., vol. 1, no. 2001, pp. I-511-I–518 vol.1, 2001.

T. Paul, U. A. Shammi, and S. Kobashi, “A Study on Face Detection Using Viola-Jones Algorithm in Various Backgrounds, Angles and Distances,” Int. J. Biomed. Soft Comput. Hum. Sci. Off. J. Biomed. Fuzzy Syst. Assoc., vol. 23, no. 1, pp. 27–36, 2018.

B. M. Smith, J. Brandt, Z. Lin, and L. Zhang, “Nonparametric context modeling of local appearance for pose- and expression-robust facial landmark localization,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 1741–1748, 2014.

W. Y. Lu and M. Yang, “Face detection based on viola-jones algorithm applying composite features,” Proc. - 2019 Int. Conf. Robot. Intell. Syst. ICRIS 2019, no. 4, pp. 82–85, 2019.

M. K. Dabhi and B. K. Pancholi, “Face Detection System Based on Viola - Jones Algorithm,” Int. J. Sci. Res., vol. 5, no. 4, pp. 62–64, Apr. 2016.

J. Huang, Y. Shang, and H. Chen, “Improved Viola-Jones face detection algorithm based on HoloLens,” Eurasip J. Image Video Process., vol. 2019, no. 1, 2019.

D. Djamaluddin, T. Indrabulan, Andani, Indrabayu, and S. W. Sidehabi, “The simulation of vehicle counting system for traffic surveillance using Viola Jones method,” Proceeding - 2014 Makassar Int. Conf. Electr. Eng. Informatics, MICEEI 2014, no. November, pp. 130–135, 2014.

K. C. Kirana, S. Wibawanto, and H. W. Herwanto, “Emotion recognition using fisher face-based viola-jones algorithm,” Int. Conf. Electr. Eng. Comput. Sci. Informatics, vol. 2018-Octob, pp. 173–177, 2018.

A. Goyal et al., “Automatic border surveillance using machine learning in remote video surveillance systems,” Lect. Notes Electr. Eng., vol. 569, pp. 751–760, 2020.

F. F. R. Insani, V. Firmansyah, A. Salsabila, and A. F. Aulia, “Pengaruh Razia Masker Dengan Perkembangan Kasus Covid-19 di Kecamatan Ciledug,” 2020.

A. K. Bhadani and A. Sinha, “A Facemask Detector using Machine Learning and Image Processing Techniques,” Eng. Sci. Technol. , an Int. J., no. November, pp. 0–8, 2020.

S. Sveleba, I. Katerynchuk, I. Karpa, I. Kunyo, S. Ugryn, and V. Ugryn, “The real time face recognition,” 2019 3rd Int. Conf. Adv. Inf. Commun. Technol. AICT 2019 - Proc., pp. 294–297, 2019.

P. Nagrath, R. Jain, A. Madan, R. Arora, P. Kataria, and J. Hemanth, “SSDMNV2: A real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2,” Sustain. Cities Soc., vol. 66, no. December 2020, p. 102692, 2021.

M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, “Fighting against COVID-19: A novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection,” Sustain. Cities Soc., vol. 65, p. 102600, 2021.

M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, “A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic,” Meas. J. Int. Meas. Confed., vol. 167, no. July 2020, p. 108288, 2021.

T. Septiana, N. Puspita, M. Al Fikih, and N. Setyawan, “Face Mask Detection Covid-19 Using Convolutional Neural Network ( Cnn ),” Semin. Nas. Teknol. dan Rekayasa 2020, pp. 27–32, 2020.




DOI: http://dx.doi.org/10.30591/jpit.v7i1.3563

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Terindeks oleh :

 

 http://ejournal.poltektegal.ac.id/public/site/images/informatika/Google_Scholar_logo.png

 

 

 

 

 

 

 

   ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Tim Redaksi JURNAL INFORMATIKA : JURNAL PENGEMBANGAN IT

Program Studi D4 Teknik Informatika
Politeknik Harapan Bersama Tegal
Jl. Mataram No.09 Pesurungan Lor Kota Tegal

Telp. +62283 - 352000

Email :
informatika.ejournal@poltektegal.ac.id

   

Copyright: JPIT (Jurnal Informatika: Jurnal Pengembangan IT) p-ISSN: 2477-5126 (print), e-ISSN 2548-9356 (online) 

Flag Counter
 
 
 
 
site
stats
 
View Visitor Statistic
 
 
 
 
 

 

Creative Commons License
JPIT (Jurnal Informatika: Jurnal Pengembangan IT) is licensed under a Creative Commons Attribution 4.0 International License.