Ekstraksi Ciri Polip dan Pendarahan Berdasarkan Citra Endoskopi Kolorektal

Ummi Athiyah, Izzati Muhimmah, Erlina Marfianti


Cancer is one of the main causes of mortality in the world. Colorectal cancer, also known as colon cancer, is a malignant tumor of the colon and rectum that begins with a polyp. Early inspection is needed to prevent and cure of colorectal cancer because in the early stages colorectal cancer showed no symptoms. At this time the development of information technology allows the quick information retrieval from an image. The aim of this research is to produce a preliminary work in the stages of information analyzing on colorectal endoscopic image extraction result in the form of polyp and bleeding by utilizing extraction technique of image information based on shape and texture. This research aimed can be the basis for the development of colorectal cancer detection system framework. The research that has been carried out gives result of characteristics that can be differentiate between colon bleeding, colon polyp, and normal colon conditions, they are aspect ratio, triangle, correlation, and energy.

Full Text:


A. Akutekwe and H. Seker, 2014. “Particle Swarm Optimization-Based Bio-Network Discovery Method for the Diagnosis of Colorectal Cancer,” Proc. - 2014 IEEE Int. Conf. Bioinforma. Biomed. IEEE BIBM 2014, pp. 8–13,.

N. Sengar, N. Mishra, and M. K. Dutta, 2016. “Grading of Colorectal Cancer using Histology Images,” 39th Int. Conf. Telecommun. Signal Process., pp. 529–532,.

D. Mitrea, S. Nedevschi, M. Abrudean, and R. Badea, 2015. “Colorectal Cancer Recognition from Ultrasound Images, Using Complex Textural Microstructure Cooccurrence Matrices, Based on Laws’ Features,” 2015 38th International Conference Telecommunications of Signal Processing TSP 2015, pp. 458–462,.

Z. Li et al., 2010. “Epidemiology of peptic ulcer disease: endoscopic results of the systematic investigation of gastrointestinal disease in China.,” Am. J. Gastroenterol., vol. 105, no. 12, pp. 2570–7,.

C. Liu, Y. Yang, L. Sun, and C.-C. Huang, 2013. “Characterization of the Colorectal Cancer in a Rabbit Model Using Quantitative High-frequency Endoscopic Ultrasound,” 2013 Jt. UFFC, EFTF PFM Symp., pp. 891–894,.

R. Zhang et al., 2017. “Automatic Detection and Classification of Colorectal Polyps by Transferring Low-Level CNN Features from Nonmedical Domain,” IEEE J. Biomedical Healing Informatics, vol. 21, no. 1, pp. 41–47,.

T. Oliveira, E. Barbosa, S. Martins, A. Goulart, J. Neves, and P. Novais, 2013. “A Prognosis System for Colorectal Cancer,” Proc. 26th IEEE International Symposium on Computer Medical System., pp. 481–484,.

M. Y. Ahmad, A. Mohamed, Y. Mohd Yusof, and S. Md. Ali, 2012. “Colorectal Cancer Image Classification Using Image Pre-Processing andMultilayer Perceptron,” International Conferance of Computer Infornation Science, vol. 1, pp. 275–280,.

U. Athiyah, “Ekstraksi Ciri untuk Pengenalan Polip dan Pendarahan Pada Citra Scan Endoskopi Kolorektal,” 2017. Universitas Islam Indonesia.

U. Athiyah, 2016. “Deteksi Kerusakan Organ Lambung dengan Metode Gray Level Cooccurence Matrix dan Probabilistic Neural Network”, Magister Teknik Informatika Fakultas Teknologi Industri Universitas Islam Indonesia, Yogyakarta,”.

Sareena, A. Mittal, and M. Kaur, 2017. “Computer Aided Diagnosis in Colorectal Cancer: A Survey of State of The Art Techniques,” Proceeding International Conference Invention Computer Technology ICICT 2016, vol. 1,.

M. Ismail, S. Elhabian, A. Farag, G. Dryden, and A. Seow, 2012. “Fully Automated 3D Colon Segmentation for Early Detection of Colorectal Cancer based on Convex Formulation of the Active Contour Model,” Computer Vision Pattern Recognition Work. (CVPRW), 2012 IEEE Computer Social Conference., pp. 58–63,.

O. Romain et al., 2013. “Towards a Multimodal Wireless Video Capsule for Detection of Colonic Polyps as Prevention of Colorectal Cancer,” 13th IEEE International Conference Bioinformatics and Bioengineering, pp. 1–6,.

T. Tamaki et al., 2013. “Computer-Aided Colorectal Tumor Classification In NBI Endoscopy: Using Local Features,” Medical Image Analysis., vol. 17, no. 1, pp. 78–100,.

P. Mesejo et al., 2016. “Computer-Aided Classification of Gastrointestinal Lesions in Regular Colonoscopy,” IEEE Trans Medical Imaging, vol. 35, no. 9, pp. 2051–2063,.

I. G. Rai, A. Sugiartha, M. Sudarma, and I. M. O. Widyantara, 2017. “Ekstraksi Fitur Warna , Tekstur dan Bentuk untuk Clustered-Based Retrieval of Images ( CLUE ),” vol. 16, no. 7 April,.

A. Banwari, N. Sengar, M. K. Dutta, and C. M. Travieso, 2017. “Automated Segmentation of Colon Gland Using Histology Images,” 2016 9th International Conferance of Contemporary Computing IC3 2016.

M. S. Nixon and A. S. Aguado, 2008. Feature Extraction & Image Processing, Second Edition. Elsevier B.V.

I. Kusumaningsih, 2011. “Ekstraksi Ciri Warna, Bentuk dan Tekstur Untuk Temu Kembali Citra Hewan,” pp. 1–3,.

I. G. R. Agung, 2016. “Ekstraksi Warna, Tekstur, Dan Bentuk Untuk Image Retrieval,” Seminar Nasional Teknologi Informasi dan Multimedia 2016, no. 2302–3805, p. 4.3-1-4.3-6,.

A. R. Putra, A. Rizal, and M. S. Mubarok, 2012. “Klasifikasi Kanker Usus Besar Berbasis Pengolahan Citra Digital dengan Metode Radial Basis Function (RBF),” Universitas Telkom.

J. . Parker, 2013. Algorithms for Image Processing and Computer Vision, Second., vol. 53, no. 9. Indianapolis: John Wiley Publishing.

A. Abebe, J. Daniels, J. W. McKean, and J. A. Kapenga, 2001. Statistics and Data Analysis. Michigan: Western Michigan University.

DOI: http://dx.doi.org/10.30591/jpit.v3i1.704


  • There are currently no refbacks.

Terindeks oleh :










DRJI Indexed Journal











Program Studi D4 Teknik Informatika
Politeknik Harapan Bersama Tegal
Jl. Mataram No.09 Pesurungan Lor Kota Tegal

Telp. +62283 - 352000

Email :


Copyright: JPIT (Jurnal Informatika: Jurnal Pengembangan IT) p-ISSN: 2477-5126 (print), e-ISSN 2548-9356 (online) 

Flag Counter
View Visitor Statistic


Creative Commons License
JPIT (Jurnal Informatika: Jurnal Pengembangan IT) is licensed under a Creative Commons Attribution 4.0 International License.