Implementasi Penerjemah Bahasa Isyarat Pada Bahasa Isyarat Indonesia (BISINDO) Dengan Metode Principal Component Analysis (PCA)

Rohmat Indra Borman, Bentar Priyopradono

Abstract


Deaf people can communicate with other normal people by utilizing hearing impairment or by using sign language. Bahasa Isyarat Indonesia (BISINDO) is a sign language promoted by Gerakan Kesejahteraan Tunarungu Indonesia (GERKATIN). An application is required to make people easier to communicate and recognize sign language especially Bahasa Isyarat Indonesia (BISINDO). This research aimed to develop a translator application that can translate a movement of sign language into a text form that can be understood by the normal person. The method used in this research is PCA (Principal Component Analysis) to identify patterns in the data and then express the data to other forms to show differences and similarities between patterns. To recognize the object, this research used a viola-jones method that gives a specific indication of a picture or image. This research will produce an application that can translate 26 letters sign language to the form of letters in general.

Full Text:

References


R.C. Gonzalez, R.E. Woods, Digital Image Processing. USA: Tom Robbins, 2002.

L.I. Smith, “A tutorial on Principal Components Analysis”, IEEE Trans. Syst., Man, Cybern., pp.12-20, 2002.

I. Kautsar, R.I. Borman, and A. Sulistyawati, “Aplikasi Pembelajaran Bahasa Isyarat Bagi Penyandang Tuna Rungu Berbasis Android Dengan Metode BISINDO”, Seminar Nasional Teknologi Informasi dan Multimedia, 2015.

N. Sugianto, F. Samopa, “Analisa Manfaat Dan Penerimaan Terhadap Implementasi Bahasa Isyarat Indonesia Pada Latar Belakang Komplek Menggunakan Kinect Dan Jaringan Syaraf Tiruan”. JUISI, Vol 1, No 1, 2015.

I.P.W. Merta, I.M.G. Surya, I.K.R. Arthana, “Handgesture To Text Dengan Metode Artificial Intelligence KNN (K-Nearest Neighbour)”, Kumpulan Artikel Mahasiswa Pendidikan Teknik Informatika (KARMAPATI), 2015.

Holisah, P. Harsani, A. Qur’ania, “Sistem Identifikasi Kode Tangan Menggunakan Principal Component Analysis Dan Backpropagation”, Jurnal Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Pakuan, 2014.

F. Astutik, “Sistem Pengenalan Kualitas Ikan Gurame dengan Wavelet, PCA, Histogram HSV dan KNN”, Jurnal LONTAR KOMPUTER, VOL. 4, NO. 2, Desember 2013.

A. R. Syakhala, D. Puspitaningrum, E. D. Purwandari, “Perbandingan Metode Principal Component Analysis (PCA) Dengan Metode Hidden Markov Model (HMM) Dalam Pengenalan Identitas Seseorang Melalui Wajah”, Jurnal Rekursif, Vol. 3, No.2, November 2015.




DOI: http://dx.doi.org/10.30591/jpit.v3i1.631

Refbacks

  • There are currently no refbacks.


Terindeks oleh :

 

 

http://ejournal.poltektegal.ac.id/public/site/images/informatika/logoGaruda-kecil1.png

 

 

 http://ejournal.poltektegal.ac.id/public/site/images/informatika/Google_Scholar_logo.png

 

 

 

 

 

 

 

 

 

 

 

 

 

  ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Tim Redaksi JURNAL INFORMATIKA : JURNAL PENGEMBANGAN IT

Program Studi D4 Teknik Informatika
Politeknik Harapan Bersama Tegal
Jl. Mataram No.09 Pesurungan Lor Kota Tegal

Telp. +62283 - 352000

Email :
informatika.ejournal@poltektegal.ac.id

   

Copyright: JPIT (Jurnal Informatika: Jurnal Pengembangan IT) p-ISSN: 2477-5126 (print), e-ISSN 2548-9356 (online) 

Flag Counter
 
 
 
 
site
stats
 
View Visitor Statistic
 
 
 
 
 

 

Creative Commons License
JPIT (Jurnal Informatika: Jurnal Pengembangan IT) is licensed under a Creative Commons Attribution 4.0 International License.