Conditional Neural Fields untuk Pengenalan Fase Gerak

Intan Nurma Yulita

Abstract


Pengenalan pola merupakan area informatika yang banyak dikaji hingga saat ini. Hal ini dikarenakan pemanfaatannya yang luas diterapkan dalam kehidupan sehari-hari. Di dalam makalah ini disajikan pengenalan pola untuk gerakan khususnya fase gerak. Secara khusus pengenalan fase gerak di dalam makalah ini menitik beratkan pada pengenalan pola pada data berbentuk sekuensial. Pengenalan ini dapat saja mengabaikan faktor sekuensialnya, namun tentu akan menurunkan akurasi yang akan diperoleh. Oleh karena itu untuk mengatasi tantangan tersebut, maka ditawarkan penggunaan Conditional Neural Fields (CNF). Metode ini merupakan gabungan antara Conditional Random Fields (CRF) dan Artifisial Neural Networks (ANN). Representasi ANN disajikan dalam bentuk gate pada lapisan tengah dari CRF. Lapisan ini bertujuan untuk memetakan hubungan non-linear antara input dan output yang terdapat di dalam data. Sebagai hasilnya diperoleh bahwa CNF terbukti lebih efektif dan efisien dibandingkan CRF berdasarkan akurasi dan banyaknya iterasi yang dibutuhkan. Namun penggunaan terlalu banyak gate ternyata tidak efektif dikarenakan konvergensi dari model pengenalan semakin sulit tercapai. Di sisi lain, jika hanya satu gate yang digunakan maka konvergensi tercapai namun akuarsi yang diperoleh rendah. Sehingga diperlukan upaya untuk menemukan banyaknya gate optimal yang diperlukan.


Full Text:

References


C. Spampinato, S. Palazzo. 2012. Hidden Markov Models for Detecting Anomalous Fish Trajectories in Underwater Footage. 2012 IEEE International Workshop on Machine Learning for Signal Processing, Santander, Spain.

Martin F. Lambert, Julian P. Whiting, Andrew V. Metcalfe. 2003. A Non-parametric Hidden Markov Model for Climate State Identification. Hydrology and Earth System Sciences, 7(5), 652-667.

Ben Cooper, and Marc Lipsitch. 2004. The Analysis of Hospital Infection Data Using Hidden Markov Models. Biostatistics(2004),5,2,Pp.223–237.

Byung-Jun Yoon. 2009. Hidden Markov Models and their Applications in Biological Sequence Analysis. Current Genomics vol.10 page 402-415

John D. Lafferty, Andrew McCallum, Fernando C. N. Pereira. 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence. In ICML 2001.

A. G. et. al. (2005). Hidden Conditional Random Fields for phone classification, Interspeech 1117–1120.

A. Q. et. Al. (2007). Hidden Conditional Random Fields, IEEE Trans. Pattern Anal. Mach. Intellr 29 1848–1852.

Zhang, S., 2012. Fuzzy-based latent-dynamic conditional random fields for continuous gesture recognition. Optical Engineering, 51(6), p.067202.

Jian Peng, Liefeng Bo, and Jinbo Xu. Conditional neural fields. In Proceedings of Neural Information Processing Systems (NIPS). 2009.

Madeo, R. C. B. ; Wagner, P. K. ; PERES, S. M.. A Review of Temporal Aspects of Hand Gesture Analysis Applied to Discourse Analysis and Natural Conversation. International Journal of Computer Science and Information Technology, v. 5, p. 1-20, 2013b.


Refbacks

  • There are currently no refbacks.


Terindeks oleh :

 

 

http://ejournal.poltektegal.ac.id/public/site/images/informatika/logoGaruda-kecil1.png

 

 

 http://ejournal.poltektegal.ac.id/public/site/images/informatika/Google_Scholar_logo.png

 

 

 

DRJI Indexed Journal

 

 

 

 

 

 

 

 

 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Tim Redaksi JURNAL INFORMATIKA : JURNAL PENGEMBANGAN IT

Program Studi D4 Teknik Informatika
Politeknik Harapan Bersama Tegal
Jl. Mataram No.09 Pesurungan Lor Kota Tegal

Telp. +62283 - 352000

Email :
informatika.ejournal@poltektegal.ac.id

 

Copyright: JPIT (Jurnal Informatika: Jurnal Pengembangan IT) p-ISSN: 2477-5126 (print), e-ISSN 2548-9356 (online) 

Flag Counter
 
 
 
 
site
stats
 
View Visitor Statistic
 
 
 
 
 

 

Creative Commons License
JPIT (Jurnal Informatika: Jurnal Pengembangan IT) is licensed under a Creative Commons Attribution 4.0 International License.